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J. Phys. A :  Math. Gen. 14 (1981) 981-992. Printed in Great Britain 

Domain wall singularity in a Landau-Ginzburg model 

I D Lawriet and M J Lowe+ 
i Department of Physics, The University, Leeds LS2 9JT, UK 
t Department of Physics, The University of Edinburgh, James Clerk Maxwell Building, 
Mayfield Road, Edinburgh E H 9  352, UK 

Received 12 August 1980 

Abstract. We study the interface between two coexisting phases in an anisotropic, ( n  i 1)- 
component Landau-Ginzburg model, with a single easy axis, and O ( n )  symmetry in the 
transverse components, which may serve to represent a d-dimensional uniaxial ferromagnet 
below its Curie point, Tc. An exact solution of the mean-field equations of motion due to 
Sarker et a1 indicates the existence of a bifurcation temperature, TR< T,. For T i  TB, the 
interface profile is consistent with the usual Bloch picture, with a non-zero density of 
transverse magnetisation within the wall. For T >  T,, the profile is Ising-like, with no 
transverse magnetisation, and approaches the known universal profile as T + T,. Analyses 
of fluctuations about this solution shows that the bifurcation is quite analogous to a 
second-order phase transition. The amplitude of transverse magnetisation vanishes as 
T +  T i  and an associated susceptibility diverges with the exponents of the ( d -  1)- 
dimensional n-vector model. 

1. Introduction 

Theoretical studies of the interface between two coexisting phases just below a critical 
point have, to date, been mainly concerned with Ising-like systems. In the context of 
field-theoretic models of the Landau-Ginzburg type, which commonly serve as a 
starting point for renormalisation-group analysis of critical phenomena in the bulk, 
these investigations are facilitated by the existence of the well known ‘kink’ solution, 
cb cc tanh Az of Ss4 theory in the mean-field approximation, where the interfacial width, 
A - I ,  is proportional to the bulk correlation length. Analyses of fluctuation corrections 
to this solution by various authors (Rudnick and Jasnow 1978a, b, Ohta and Kawasaki 
1977, see also Wallace and Zia 1979) yield results for the interfacial profile which are in 
good agreement with experimental measurements on liquid-gas systems (Huang and 
Webb 1969, Wu and Webb 1973). 

The notion of universality of critical behaviour in the bulk is well supported by both 
experimental evidence and theoretical considerations. Thus, for example, it appears 
that the asymptotic critical behaviour both of simple fluids and of uniaxial magnets are 
derivable from the same Landau-Ginzburg model. However, it is less clear to what 
extent the properties of interfaces are also universal. The example we have in mind is 
that of a ferromagnet with a single easy axis of magnetisation. For such a system, the 
analogue of the gas-liquid profile, which seems to be universal for spatial dimen- 
sionality d > 3, with small non-universal corrections when d = 3 (Rudnick and Jasnow 
1978b), would be a state in which the magnetisation density is always parallel to the easy 
axis, but varies continuously in amplitude, with a change of sign at the middle of the 
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interface. The interfacial thickness in such a state would be proportional to the bulk 
correlation length. This picture would appear, at first sight, to be at variance with the 
elementary Bloch model of a domain wall, according to which, spins within the wall are 
gradually bent away from the easy axis, and the wall thickness is determined not by the 
correlation length, but by the ratio of the anisotropy and exchange energies. 

To examine this question in more detail, we report in this paper an investigation of 
the interface in an anisotropic Landau-Ginzburg model which should, at least for 
temperaturev sufficiently close to the Curie point, serve as a mode! for the domain wall 
in a uniaxial ferromagnet. For simplicity, we take the easy axis to lie parallel to the 
interface. From elementary magnetostatic considerations, the component of 
magnetisation normal to the interface is then required to remain constant, and 
therefore equal to zero. For a system of three-component spins, we are left with two 
independent components; the bulk spatial dimensionality, d ,  is taken as usual io be an 
independent parameter. It is in fact instructive to consider the more general model 
defined by the Hamiltonian 

where Sl(x) is a scalar field, and S 2 ( x )  is an n-component vector. The parameter g here 
is proportional to the ratio of the anisotropy and exchange energies. Although this 
quantity is in general significantly temperature dependent, it is not expected to change 
sign at the critical point, and for the purpose of this model may be taken as an 
independent variable. The most significant temperature dependence appears as usual 
in r, which inay he taken as linear in temperature, while U may be taken as a positive 
constant. 

The bulk critical properties of this model have been studied extensively (see e.g. 
Fisher and Pfeuty 1972, Nelson and Domany 1976, Amit and Goldschmidt 1978). Its 
mean-field phase diagram is shown in figure 1, in terms of g and 

Figure 1. Phase diagram in the mean-field approximation. Loci of critical points (full lines) 
and bifurcation points (broken lines) meet at the bicritical point. For negative g, the 
bifurcation locus is present only when n = 1, there being no interface with a broken 
continuous symmetry. 
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where To(g) is the mean-field transition temperature; the two critical loci at t = lgl meet 
at the bicritical point t = g = 0.  For the case of a single easy axis of magnetisation, we 
take g 3 0 in what follows. The magnetisation in the ordered phase, t < /gl, is found in 
mean-field theory by solving the equations 

S X / S S l ( x  j =. -V2S1 - rS1 +bus1(s: + S:j = o 
S X / S S ~ ( X )  = -v2s2 + (2g - r)S2 + B u s ~ ( s :  + s:) = 0. 

(1.3) 

(1.4) 
The uniform solutions are given, for g > 0, by 

SI = *(6r/u) ' /* ,  s2 = 0, (1.5) 

and represent absolute minima of (1.1). A pair of solitary wave solutions which 
interpolate between these two minima, and in which the spin fields vary only in one 
spatial direction (the z axis, say), has been given in another context by Sarker et a1 
(1976).  For all positive values of r and g ,  there is a solution 

(1.6) S1 = * ( 6 r / ~ ) ~ / '  tanh Az, 

s2 = 0 ,  

2 r. 
with 

I_ (1.7) 
However, this solution is stable (i.e. it is a local minimum of (1 .1))  only when r G 4g. For 
r > 4g, thereis a second, stable solution, namely 

SI = It(6r/u) ' /* tanh hz,  

S2 = [6(r - 4 g ) / ~ ] " ~  (sech h z ) s  

A =2g,  
where 

2 (1.10) 

and s is an arbitrary n-component unit vector. 
Evidently, the first solution, appropriate for temperatures sufficiently close to the 

critical temperature, or for sufficiently large anisotropy, corresponds to the usual 
interface in a purely Ising-like system. Indeed, one may use standard methods to 
evaluate fluctuation corrections and, at least to first order in the &b expansion (where & b  

denotes the deviation of the bulk dimensionality from 4 )  one obtains a result which 
differs from that of Rudnick and Jasnow (1978a) only by a minor correction to the 
interfacial width. One sees from (1.7) that this width is again proportional to the bulk 
correlation length. The second solution, appropriate for sufficiently low temperatures, 
or small enough anisotropy, is consistent with the usual Bloch wall picture: in the case 
n = 1 one has a local magnetisation density, of magnitude 

M ( Z )  = (s: + sip2, (1.11) 

tan e = lS21/Sl. (1.12) 

which makes an angle O(z) with the anisotropy axis, given by 

At sufficiently low temperatures, r >> 4g, the magnetisation density (1.11) is approxi- 
mately constant, and equal to the spontaneous magnetisation of the bulk phases, while 
e ( z )  is given approximately by 

(1.13) cos e ( z )  = tanh hz.  
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In this low-temperature state, the width of the domain wall is determined entirely by the 
anisotropy parameter, g,  according to (1.10). 

For reasons which will become apparent in the next section, we have not succeeded 
in evaluating fluctuation corrections to the profile given by (1.8) and (1.9). Indeed, the 
result of such a calculation would probably have no universal significance since this 
profile does not appear in the immediate neighbourhood of the critical loci. The 
purpose of the work reported here is to elucidate the nature of the singularity which 
occurs on the loci r = 41g1, or t = -31g1, indicated by the broken lines in figure 1. 
Following Sarker et al (1976) we refer to these lines as loci of bifurcation points, which 
seems to be consistent with the terminology of non-linear differential equation theory. 
In particular, we suggest that this singularity has the hallmarks of a second-order phase 
transition occurring within the interfacial region. For r<41gl,  which we call the 
‘Ising-like’ region, the sign of the solution (1.5) will be selected either spontaneously or 
by application of appropriate boundary conditions at z = fa. For definiteness we 
choose the positive sign, which commits us also to choosing the positive sign in (1.8) for 
r < 4/gl. This latter region we refer to as ‘Bloch-like’. What happens as one approaches 
a bifurcation point from the Bloch-like side is that the local minima of the Hamiltonian, 
or free energy functional, (1.1), corresponding to the unit vector S,  coalesce in a 
continuous manner, leading to a single local minimum (1.6) in the Ising-like region. In 
the usual way, one may identify an order parameter, namely the amplitude of the 
transverse magnetisation Sz, which is equal to zero in the Ising-like region, and which, 
in the Bloch-like region, varies as ( r  - 4g)OB, with the usual mean-field-like exponent 

P B  = i, (1.14) 

the subscript denoting bifurcation. Furthermore, as we shall see in the next section, 
there is a susceptibility, associated with fluctuations in Sz, which diverges at the 
bifurcation loci as / r  - 4 g p B ,  again with the mean-field-like exponent 

Y B = l  (1.15) 

in this approximation. 
In the following section we pursue this analogy in detail, and use standard semiclas- 

sical methods (Gervais and Sakita 1975, Gervais et  a1 1976) to derive the effective 
Hamiltonian governing the transition. 

Since the transition occurs essentially in a spatial region of finite extent in the z 
direction, we may anticipate the existence of a borderline bulk dimensionality, d” = 5 ,  
above which the mean-field treatment of this section is adequate, and this expectation 
will be confirmed. Qne might anticipate further that the leading singularity will be that 
of the (d-1)-dimensiona: n-vector model: indeed a conjecture to this effect has 
recently been advanced by Lajzerowicz and Niez (1979) for the case n = 1. We shall 
show that this picture is essentially correct. However, this result is far from trivial, 
owing to the presence of a massless Goldstone mode associated with the spontaneous 
breaking of the Euclidean invariance by the interface. The singularities induced by such 
modes in isolation have been studied in some detail (Wallace arid Zia 1979, Lowe and 
Wallace 1980). The effective Hamiltonians governing such modes are of a ’surface 
tension’ type. 

The important feature here is that the Goldstone mode apparently couples to the 
order parameter of the bifurcation transition, and might be expected to modify the 
leading infrared singularity. In fact, however, as we show, a correct treatment of the 
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Goldstone mode yields only effective couplings with sufficiently high derivatives to 
ensure their irrelevance in the usual renormalisation-group sense. 

The final topic to be considered in this section is the shape of the bifurcation loci near 
the bicritical point, t = g = 0. As is well known, the effect of critical fluctuations on the 
shape of the critical loci, t = t , (g) ,  is pronounced, and leads to the cusp at the bicritical 
point shown schematically in figure 2. Renormalisation-group analysis indicates that 
the critical loci near the bicritical point have the form 

(1.16) 1/d t,(g) =constant Igl 

where the crossover exponent is given (Wilson 1972) by 

4 = 1 + ( n  + 1 ) ~ , / 2 ( n  + ~ ) + O ( F ; ) ;  ~ b = 4 - d .  (1.17) 

Figure 2. Schematic representation of the phase diagram including the effects of critical 
fluctuations. 

The following argument, of a standard type, indicates that the shape of the bifurcation 
loci is governed by the same crossover exponent (1.17). The free energy of the system 
may be expanded as a Taylor series in the magnetisation, namely 

(1.18) 
where 

M ( x )  = (SL(X)), (1.19) 

and the vertex functions, r, are those appropriate to the bulk phases. (The uninitiated 
reader is referred to the book by Amit (1978) for standard field-theoretic methods and 
terminology.) The full interfacial profile is obtained, in principle, by minimising, with 
respect to M, (x), the free energy (1.18) which reduces, in the mean-field approximation, 
to (1.1). General scaling arguments and direct renormalisation-group analysis show 
that there is a region near the bicritical point, in which the vertex functions are well 
approximated by the scaling form 

rn(X,;  g, ~ ) - ~ t l A + n ( / ~ l V ~ ~ ;  glt l -9 (1.20) 



986 I D  Lawrie and M J Lowe 

where (Y represents the collection of labels appearing in (1.18), and the exponents A,, 
the correlation length exponent v and the crossover exponent 4 are those characteristic 
of the bicritical point, rather than the critical loci. Although (1.20) yields no direct 
information about the nature of singularities from the bicritical point, one may conclude 
that such singularities must occur, if they occur at all, when the argument gltl-' reaches 
some critical value, and this leads directly to (1.16) for the location of the critical loci. 

Now, (1.20), together with explicit results for A,, leads to a similar scaling form for 
the free energy, namely 

F[{M,(x)}, g, t1= l ~ ~ ~ d v ~ ~ ~ f i z ( ~ ~ l Y x ) ~ ,  gltl-'] 

M,(x) = ltIPfi[(ItlYX) (1.22) 

(1.21) 

where is defined by 

and ,B is again the order parameter exponent appropriate to the bicritical point. 
Minimisation of (1.20) implies that fi, has the form 

GI =fit(ltlvx, gltl-'), (1.23) 

and, provided that M, depends smoothly on x, we conclude that any singularity in M,, 
whether of the critical or bifurcation variety, occurs when gltj-' reaches an appropriate 
value. Thus, the form of the bifurcation loci is that indicated in figure 2. It is perhaps 
worth emphasising that (1.22) does not in itself yield any information about the nature 
of the bifurcation singularity. In particular, it does not imply that the interfacial width 
has the form constant Itj-", as may be verified by expressing (1.8) and (1.9) in the fcrm 
(1.22) with v = and 4 = 1. 

From now on, we shall be concerned with the nature of the bifurcation singularity 
away from the bicritical point. 

2. Effective Hamiltonian for the bifurcation singularity 

In this section we analyse the effect of thermal fluctuations of the mean-field-like 
description of the bifurcation transition given in 5 1. In the usual way, we shift the fields 
S, by their classical expectation values, writing 

S,(x, z )  = M I ( Z  + 4 )  + d,(x, + 4 )  (2.1) 

where x denotes the (d-1)  coordinates parallel to the interface, M, denotes the 
classical solution (1.6) or (1.8) and (1.9) and 9 is at this stage a constant parameter 
locating the position of the interface. Fluctuations in the deviation fields are then 
governed by the partition function 

= 1441 exp{-W&)) (2.2) 

where d[d] denotes functional integration and R(q5) is obtained by substituting (2.1) 
in (1.1). In the Ising-like region, r <4g, this yields 



Domain wall singularity in a Landau-Ginzburg model 987 

where the differential operators D1 and D2 are given by 

D1 = -V2 + 2h '(2 - 3 sech' h z )  

0% = -V2 + A '(1 - 2 sech' h z )  + a 

U = l(4g -- r ) .  
with 

To obtain propagators for the 4 fields, one must diagonalise the quadratic part of 
(2.3) by solving the eigenvalue equation 

(2.7) 

The solutions we require explicitly are soft modes, namely those which have zero 
eigenvalues when U = 0. There are two of these. One is the expected translation mode 
given, up to an appropriate normalisation, by 

which reduces to the gradient of (1.6) when k 2 =  0. The other is 

(2.9) 

where t' is a constant vector. 
Derivation of the corresponding modes in the Bloch-like state is discussed in the 

Appendix. 
One may now envisage expanding d1 and 4' in the eigenfunctions U, and U,, the 

expansion coefficients becoming the new functional integration variables. Evidently, 
the coefficient x ( k )  of (2.9) in this expansion represents the order parameter of the 
transition. When U becomes negative, x will acquire an expectation value, propor- 
tional to at the mean-field level, leading to the new interface profile (1.9). The 
correlation function associated with fluctuations in x is given at the mean-field level by 
(a + k2) - ' ,  giving a susceptibility exponent yB = 1, when q2 = 0. We denote the 
remaining terms of the normal mode expansion collectively by 

G::;:: 1;;); 
and evidently have the orthogonality conditions 

(2.10) 

(2.11) 

To obtain the desired effective Hamiltonian it is convenient to replace functional 
integration over the coefficient of (2.8) by integration over the collective coordinate q, 
which is now considered a function of the ( d  - 1) spatial coordinates x. The Jacobian 
associated with the transformations of this kind is well known (see e.g. Diehl eta1 1980) 
and may be ignored if one uses a dimensional regularisation scheme to control 
ultraviolet divergences. We thus substitute into the Hamiltonian (1.1) the expression 

(2.12) 
0 

0 x ( x )  sech A ( z  + q k ) )  
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The result is conveniently written as a sum of three terms: 

(2.13) 

The first term is given by 

Xl = dd-1x{A(aq)2+B[L 2 ( a X ) 2 + 3 g X 2 1 +  CX4h (2.14) 

where A,  B, C are constants, and a represents the (d-1)-dimensional gradient 
operator. The second has the form 

%2= ddx{iR1D1R1+iR2* D,R2+O(R?)}  (2.15) 

and, taken in conjunction with the orthogonality conditions (2.11), ensures that RI and 
R2 are massive fields. Finally, the interaction terms in %3 are linear or quadratic in R,, 
and at least quadratic in x and aq. 

The required effective Hamiltonian, involving only ~ ( x )  and the translation mode as 
represented by q(x), is now obtained by integrating out the R, and is given by 

J 

%e, = 21 + In(exp{-%3)), (2.16) 

where angular brackets represent averaging in the ensemble of X2.  It has the form 

%,,= J d d - 1 ~ { ~ A ( a q ) 2 + B [ i ( a x ) 2 + ~ ~ ~ 2 ] +  C ~ ~ } + O ( ( a q ) ~ x ~ ,  x 6 ,  ( ~ q ) ~ ,  etc). (2.17) 

The terms multiplied by B and e yield the standard (d - 1)-dimensional n-vector model 
which, taken alone, has an infrared singularity governed by the isotropic fixed point of 
the renormalisation group. Furthermore, one sees that interactions with the translation 
mode are only via operators which are irrelevant at that fixed point, and thus will 
contribute only higher order corrections. We thus confirm that the exponents of the 
bifurcation transition should be those of the isotropic, (d - 1)-dimensional n-vector 
model. 

Since our effective Hamiltonian (2.17) has been derived by considering the high- 
temperature, Ising-like state, it remains to inquire whether the residual interactions 
with the translation mode can seriously affect the nature of the low-temperature, 
Bloch-like state. In the two-component case (n = 1) these interactions are clearly 
irrelevant; however, for n 2 2, there are additional Goldstone modes due io the 
spontaneously broken O(n) invariance, and it is not immediately obvious that the 
effects of the translation mode will be less relevant than the self-interactions of these 
modes. This can be confirmed by introducing the O(n)  Goldstone modes as collective 
coordinates in our expansion about the Bloch wall type interface, by analogy with the 
introduction of a translation mode collective coordinate in (2.12). An analysis similar 
to the above achieves this. Explicitly we obtain 

%ff = 

where 

(2.18) 

n-1 
2 2 a n = l -  1 ai .  

i = l  
(2.19) 
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We thus confirm that interactions with the translation mode do not affect the nature of 
the ordered state in leading order. 

3. Discussion 

We have shown that the interface in our model system, of bulk dimensionality d, 
undergoes a second-order phase transition, whose leading singularity is that of the 
( d  - 1)-dimensional n-vector model, n being the number of spin components transverse 
to the single ordering axis. Our conclusions for the physically interesting case d = 3 are 
best summarised for several distinct cases. 

3.1. Two-component model (n = 1). 

In this case, the transition temperature T B  separates a state with a Bloch-like profile for 
T <  T B  whose width is determined by the degree of anisotropy, from a state with an 
Ising-like profile for T > T, of width equal to the bulk correlation length. As T + T i ,  
the transverse magnetisation density within the interface vanishes as 

M~-(TB-  T)PBF(Z) (3.1) 

where F ( z )  - sech A t  in the mean-field approximation. In addition there is a divergent 
susceptibility, which may be understood formally by considering the correlation 
function 

GI, (XZ ; x ’ z ‘ )  = ([Sf (XZ) -MI ( 2  ) ][SI  (x‘z’) - M, (2’11). (3.2) 
Regarded as an integral operator, GI, has a set of eigenfunctions, u , ( k a ;  p), with 
eigenvalues g(ka  ; T ) ,  satisfying 

J d2x’ dz’  G,,(;z; g‘z’)u,(ka; x‘z’) = g ( k c y ;  ~ ) u , ( k c y ;  xz), (3.3) 

where & is the wavevector in the plane of the interface, and cy labels normal modes in the 
z direction. One of these eigenvalues, g ( k a ;  T ) ,  which is given in mean-field theory by 
the inverse of pu in (2.9), diverges when k = 0 and T + T B  as 

(3.4) 

Since G,, may be expanded in its eigenfunctions, with expansion coefficients g ( k a ;  T ) ,  
this represents a singularity of the correlation function, which should in principle be 
detectable, for example by neutron scattering. The exponents PB and ye are those of 
the single-component S4 model which, according to the usual universality arguments, 
should be identical with those of the two-dimensional Ising model, namely 

(3.5) 

g ( 0 a ;  T )  - IT- TBJYe. 

7 
P B  = i; Y B = Z .  

3.2. Three-component model (n = 2). 

In the isotropic model that we have considered explicitly, the case n = 2 yields the 
singularity of the two-dimensional XY model. Although this singularity cannot be 
studied directly in the S4 model, by the expansion around ( d  - 1) = 4, general uni- 
versality arguments, supported by transformations of the kind leading to (2.18), 
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indicate that it should have the same asymptotic form as that found, for example, by 
Jost et  al(1977), for systems of fixed-length spins. As is well known, this model exhibits 
no spontaneous magnetisation, and we conclude that no interface of the Bloch-wall 
type exists at any finite temperature, but that the susceptibility discussed above is 
infinite for ail 7'<< TB. In practice, however, any crystalline system has residual 
anisotropies in the transverse directions. The effect of anisotropies on the planar model 
has been investigated in some detail by JosC et a1 (1977), and we may draw on their 
results for some qualitative conclusions. Firstly, the case of a single preferred trans- 
verse direction should be essentially the same as the case n = 1 considered above. For 
square anisotropy, we expect a transition at temperature TB between Bloch-like and 
Ising-like profiles, but with non-universal exponents, depending on the magnitude of 
the residual anisotropy. For hexagonal anisotropy, we expect the transition to take 
place in two stages. Below a lower critical temperature, T;I, the profile should be 
Bloch-like, the transverse magnetisation pointing along one of the six preferred 
directions. For Ti3 < T < TB, there should be an infinite susceptibility but no transverse 
magnetisation. For T > TB, the profile should be Ising-like, and the susceptibility 
should diverge as T -.+ T i ,  again with a non-universal exponent. 

3.3. Models with four or more components (n 2 3). 

We discuss this case briefly, for the sake of completeness, although we are not aware of 
any physical system to which it might be relevant. Although physical realisations of 
models with four or more compocents exist (Mukamel and Krinsky 1976) they exhibit 
antiferromagnetic or structural phase transitions, and would not be expected to have 
domain walls. With perfect transverse isotropy, there would be an Ising-like profile at  
all temperatures with no singularities, except possibly at T=O. In the presence of 
residual transverse anisotropies, various types of transition, including those discussed 
above, would be possible, depending on the nature of the anisotropy. 

Finally, it should be remarked that the presence of dipolar interactions, which are 
not included in our model, is likely to be important in magnetic systems. We have not 
considered this question in detail but, as observed in the Introduction, the effect of a 
significant magnetostatic energy is probably to give an effective Hamiltonian of the 
two-component ( n  = 1) type. 
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Appendix 

The analogues in the Bloch-like region of the soft nodes (2 .8 )  and (2.9) are eigenvectors 
of the operator 

D I  + 2(r  - 4 g ) t 2  

2 r 1 / 2 ( r - 4 g ) 1 / 2 ~ t  D z - a + 2 ( r - 4 g ) s 2  

2r1l2(r  - 4g)'12st 
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which arises from the substitution (2.1) with (1.8) and (1.9). The operators D1 and D2 
are given by (2.4) and (2.5), while s and t denote sech hz  and tanh hz with A' = 2g. One 
easily verifies that the translation mode (VMI, VM2) exp(ik - g) is an eigenvector with 
eigenvalue po = k 2 .  We now show that the second soft mode and its eigenvalue have the 
form 

(A21 

The distribution of even and odd functions guarantees orthogonality to the translation 
mode, and it clearly suffices to consider the case k = 0. 

Substitution of (A2) in the eigenvalue equation yields the following recursion 
relations for the coefficients a,, b,, c, and d, : 

/2(r - 4g) - p  -h2(n2-4)la, 

= 12(r -4g) - A 2 ( n 2 -  3n -4)la,-2 + 2r1l2(r -4g)'/2(d,-3 - d,-*), (A3) 

12(r -4g) - p  - h 2 ( n 2  -4)/b, + 2nh2a, 

('44) = 12(r-4g)-A 2 2  ( n  -n-6)lbn-2-2r 1/2 (r-4g) 1/2  c,-l, 

lA2(n2- l)+plc,  -2nh2d, 

= 12(r - 4g) + A 2n ( n  -. 3)lc,,-2 

+2r1l2(r -4g)1/2(b,..1 -bn-3)-2h2(n - l)dn-2, (A51 

IA2(n2-1)+p~d, 

= 12(r -4g)+A2(n2- n -2)ld,-2+ 2r1l2(r -4g)1/2a,-1. (A6) 

Since (A2) is to be a normalised bound state, these relations must be solved with the 
initial conditions a, = b, = c,, = d, = 0 for n 0. Evidently (A3) and (A6) form a closed 
system which may be solved independently. Setting n = 1 in (A6) yields 

p d l =  0 (A7) 

with the given initial conditions. If this equation is satisfied by taking p = 0, the 
complete solution can be found in closed form. For z > 0, it is identical with the 
translation mode, but the parity of (A2) must be maintained by suitable sign changes at 
the origin, and we conclude that this solution is not admissible as an independent 
eigenvector. We therefore take dl = 0, and proceed to set n = 2 in (A3). We then 
obtain a non-trivial solution provided that the eigenvalue p is given exactly by 

p = 2(r -.4g), (A81 

which yields the desired result (A2). One may then find successive coefficients a, and d,, 
in terms of the undetermined parameter a2. In order to find a suitable value for a2, 
consider (A4) with n = 2. This gives 

('49) 4h2a2 = -2r 1/2 (r  -4g)'/2c1. 

The value 
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must be fixed by requiring that U, reduce to (2.9) when r=4g .  Although the 
determination of successive coefficients does not lead to a power series in (I - 4g)1’2, 
one easily verifies that the remaining terms are at least of order (I-4g). 
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